Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34).

Identifieur interne : 004232 ( Main/Exploration ); précédent : 004231; suivant : 004233

Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34).

Auteurs : Benoit Van Aken [États-Unis] ; Jong M. Yoon ; Craig L. Just ; Jerald L. Schnoor

Source :

RBID : pubmed:15461165

Descripteurs français

English descriptors

Abstract

Poplar tissue cultures and leaf crude extracts (Populus deltoides x nigra DN-34) were exposed to [U-14C]hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and incubated under light and in the dark. Poplar tissue cultures were able to partially reduce RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), regardless of the presence or absence of light. However, further transformation of RDX, MNX, and DNX required exposure to light and resulted in the formation of formaldehyde (CH2O), methanol (CH3OH), and carbon dioxide (CO2). Similarly, transformation of RDX by poplar leaf crude extracts required exposure to light. Neither reduction of RDX to MNX and DNX nor mineralization into CO2 were recorded in crude extracts, even when exposed to light, suggesting that both processes were light-independent and required intact plant cells. Control experiments without plant material showed that RDX was partially transformed abiotically, by the sole action of light, but to a lesser extent than in the presence of plant crude extracts, suggesting the intervention of plant subcellular structures through a light-mediated mechanism. Poplar tissue cultures were also shown to mineralize 14CH2O and 14CH3OH, regardless of the presence or absence of light. These results suggest that transformation of [U-14C]RDX by plant tissue cultures may occur through a three-step process, involving (i) a light-independent reduction of RDX to MNX and DNX by intact plant cells; (ii) a plant/light-mediated breakdown of the heterocyclic ring of RDX, MNX, or DNX into C1-labeled metabolites (CH2O and CH3OH); and (iii) a further light-independent mineralization of C1-labeled metabolites by intact plant cells. This is the first time that a significant mineralization of RDX into CO2 by light-exposed plant tissue cultures is reported.

DOI: 10.1021/es049837a
PubMed: 15461165


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34).</title>
<author>
<name sortKey="Van Aken, Benoit" sort="Van Aken, Benoit" uniqKey="Van Aken B" first="Benoit" last="Van Aken">Benoit Van Aken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa 52242, USA. bvanaken@engineering.uiowa.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa 52242</wicri:regionArea>
<orgName type="university">Université de l'Iowa</orgName>
<placeName>
<settlement type="city">Iowa City</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Jong M" sort="Yoon, Jong M" uniqKey="Yoon J" first="Jong M" last="Yoon">Jong M. Yoon</name>
</author>
<author>
<name sortKey="Just, Craig L" sort="Just, Craig L" uniqKey="Just C" first="Craig L" last="Just">Craig L. Just</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2004">2004</date>
<idno type="RBID">pubmed:15461165</idno>
<idno type="pmid">15461165</idno>
<idno type="doi">10.1021/es049837a</idno>
<idno type="wicri:Area/Main/Corpus">004190</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004190</idno>
<idno type="wicri:Area/Main/Curation">004190</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004190</idno>
<idno type="wicri:Area/Main/Exploration">004190</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34).</title>
<author>
<name sortKey="Van Aken, Benoit" sort="Van Aken, Benoit" uniqKey="Van Aken B" first="Benoit" last="Van Aken">Benoit Van Aken</name>
<affiliation wicri:level="4">
<nlm:affiliation>Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa 52242, USA. bvanaken@engineering.uiowa.edu</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa 52242</wicri:regionArea>
<orgName type="university">Université de l'Iowa</orgName>
<placeName>
<settlement type="city">Iowa City</settlement>
<region type="state">Iowa</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Yoon, Jong M" sort="Yoon, Jong M" uniqKey="Yoon J" first="Jong M" last="Yoon">Jong M. Yoon</name>
</author>
<author>
<name sortKey="Just, Craig L" sort="Just, Craig L" uniqKey="Just C" first="Craig L" last="Just">Craig L. Just</name>
</author>
<author>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
</author>
</analytic>
<series>
<title level="j">Environmental science & technology</title>
<idno type="ISSN">0013-936X</idno>
<imprint>
<date when="2004" type="published">2004</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Biodegradation, Environmental (MeSH)</term>
<term>Carbon Dioxide (chemistry)</term>
<term>Carbon Dioxide (metabolism)</term>
<term>Culture Techniques (MeSH)</term>
<term>Environmental Pollutants (metabolism)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Photochemistry (MeSH)</term>
<term>Plant Extracts (chemistry)</term>
<term>Plant Extracts (radiation effects)</term>
<term>Plant Leaves (metabolism)</term>
<term>Plant Leaves (radiation effects)</term>
<term>Populus (metabolism)</term>
<term>Rodenticides (chemistry)</term>
<term>Rodenticides (metabolism)</term>
<term>Time Factors (MeSH)</term>
<term>Tissue Culture Techniques (MeSH)</term>
<term>Triazines (chemistry)</term>
<term>Triazines (metabolism)</term>
<term>Ultraviolet Rays (MeSH)</term>
<term>Waste Management (methods)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Dioxyde de carbone (composition chimique)</term>
<term>Dioxyde de carbone (métabolisme)</term>
<term>Dépollution biologique de l'environnement (MeSH)</term>
<term>Extraits de plantes (composition chimique)</term>
<term>Extraits de plantes (effets des radiations)</term>
<term>Facteurs temps (MeSH)</term>
<term>Feuilles de plante (effets des radiations)</term>
<term>Feuilles de plante (métabolisme)</term>
<term>Gestion des déchets (méthodes)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Photochimie (MeSH)</term>
<term>Polluants environnementaux (métabolisme)</term>
<term>Populus (métabolisme)</term>
<term>Raticides (composition chimique)</term>
<term>Raticides (métabolisme)</term>
<term>Rayons ultraviolets (MeSH)</term>
<term>Techniques de culture (MeSH)</term>
<term>Techniques de culture de tissus (MeSH)</term>
<term>Triazines (composition chimique)</term>
<term>Triazines (métabolisme)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Plant Extracts</term>
<term>Rodenticides</term>
<term>Triazines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Carbon Dioxide</term>
<term>Environmental Pollutants</term>
<term>Rodenticides</term>
<term>Triazines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="radiation effects" xml:lang="en">
<term>Plant Extracts</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Extraits de plantes</term>
<term>Raticides</term>
<term>Triazines</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des radiations" xml:lang="fr">
<term>Extraits de plantes</term>
<term>Feuilles de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Waste Management</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Dioxyde de carbone</term>
<term>Feuilles de plante</term>
<term>Polluants environnementaux</term>
<term>Populus</term>
<term>Raticides</term>
<term>Triazines</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Gestion des déchets</term>
</keywords>
<keywords scheme="MESH" qualifier="radiation effects" xml:lang="en">
<term>Plant Leaves</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biodegradation, Environmental</term>
<term>Culture Techniques</term>
<term>Oxidation-Reduction</term>
<term>Photochemistry</term>
<term>Time Factors</term>
<term>Tissue Culture Techniques</term>
<term>Ultraviolet Rays</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Dépollution biologique de l'environnement</term>
<term>Facteurs temps</term>
<term>Oxydoréduction</term>
<term>Photochimie</term>
<term>Rayons ultraviolets</term>
<term>Techniques de culture</term>
<term>Techniques de culture de tissus</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Poplar tissue cultures and leaf crude extracts (Populus deltoides x nigra DN-34) were exposed to [U-14C]hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and incubated under light and in the dark. Poplar tissue cultures were able to partially reduce RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), regardless of the presence or absence of light. However, further transformation of RDX, MNX, and DNX required exposure to light and resulted in the formation of formaldehyde (CH2O), methanol (CH3OH), and carbon dioxide (CO2). Similarly, transformation of RDX by poplar leaf crude extracts required exposure to light. Neither reduction of RDX to MNX and DNX nor mineralization into CO2 were recorded in crude extracts, even when exposed to light, suggesting that both processes were light-independent and required intact plant cells. Control experiments without plant material showed that RDX was partially transformed abiotically, by the sole action of light, but to a lesser extent than in the presence of plant crude extracts, suggesting the intervention of plant subcellular structures through a light-mediated mechanism. Poplar tissue cultures were also shown to mineralize 14CH2O and 14CH3OH, regardless of the presence or absence of light. These results suggest that transformation of [U-14C]RDX by plant tissue cultures may occur through a three-step process, involving (i) a light-independent reduction of RDX to MNX and DNX by intact plant cells; (ii) a plant/light-mediated breakdown of the heterocyclic ring of RDX, MNX, or DNX into C1-labeled metabolites (CH2O and CH3OH); and (iii) a further light-independent mineralization of C1-labeled metabolites by intact plant cells. This is the first time that a significant mineralization of RDX into CO2 by light-exposed plant tissue cultures is reported.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">15461165</PMID>
<DateCompleted>
<Year>2005</Year>
<Month>02</Month>
<Day>03</Day>
</DateCompleted>
<DateRevised>
<Year>2019</Year>
<Month>07</Month>
<Day>14</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0013-936X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>38</Volume>
<Issue>17</Issue>
<PubDate>
<Year>2004</Year>
<Month>Sep</Month>
<Day>01</Day>
</PubDate>
</JournalIssue>
<Title>Environmental science & technology</Title>
<ISOAbbreviation>Environ Sci Technol</ISOAbbreviation>
</Journal>
<ArticleTitle>Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34).</ArticleTitle>
<Pagination>
<MedlinePgn>4572-9</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>Poplar tissue cultures and leaf crude extracts (Populus deltoides x nigra DN-34) were exposed to [U-14C]hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and incubated under light and in the dark. Poplar tissue cultures were able to partially reduce RDX to hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine (MNX) and hexahydro-1,3-dinitroso-5-nitro-1,3,5-triazine (DNX), regardless of the presence or absence of light. However, further transformation of RDX, MNX, and DNX required exposure to light and resulted in the formation of formaldehyde (CH2O), methanol (CH3OH), and carbon dioxide (CO2). Similarly, transformation of RDX by poplar leaf crude extracts required exposure to light. Neither reduction of RDX to MNX and DNX nor mineralization into CO2 were recorded in crude extracts, even when exposed to light, suggesting that both processes were light-independent and required intact plant cells. Control experiments without plant material showed that RDX was partially transformed abiotically, by the sole action of light, but to a lesser extent than in the presence of plant crude extracts, suggesting the intervention of plant subcellular structures through a light-mediated mechanism. Poplar tissue cultures were also shown to mineralize 14CH2O and 14CH3OH, regardless of the presence or absence of light. These results suggest that transformation of [U-14C]RDX by plant tissue cultures may occur through a three-step process, involving (i) a light-independent reduction of RDX to MNX and DNX by intact plant cells; (ii) a plant/light-mediated breakdown of the heterocyclic ring of RDX, MNX, or DNX into C1-labeled metabolites (CH2O and CH3OH); and (iii) a further light-independent mineralization of C1-labeled metabolites by intact plant cells. This is the first time that a significant mineralization of RDX into CO2 by light-exposed plant tissue cultures is reported.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Van Aken</LastName>
<ForeName>Benoit</ForeName>
<Initials>B</Initials>
<AffiliationInfo>
<Affiliation>Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, Iowa 52242, USA. bvanaken@engineering.uiowa.edu</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yoon</LastName>
<ForeName>Jong M</ForeName>
<Initials>JM</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Just</LastName>
<ForeName>Craig L</ForeName>
<Initials>CL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Schnoor</LastName>
<ForeName>Jerald L</ForeName>
<Initials>JL</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Environ Sci Technol</MedlineTA>
<NlmUniqueID>0213155</NlmUniqueID>
<ISSNLinking>0013-936X</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D004785">Environmental Pollutants</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D010936">Plant Extracts</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012378">Rodenticides</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D014227">Triazines</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W91SSV5831</RegistryNumber>
<NameOfSubstance UI="C009160">cyclonite</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001673" MajorTopicYN="N">Biodegradation, Environmental</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046508" MajorTopicYN="N">Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004785" MajorTopicYN="N">Environmental Pollutants</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010777" MajorTopicYN="N">Photochemistry</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010936" MajorTopicYN="N">Plant Extracts</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
<QualifierName UI="Q000528" MajorTopicYN="N">radiation effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012378" MajorTopicYN="N">Rodenticides</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013997" MajorTopicYN="N">Time Factors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046509" MajorTopicYN="N">Tissue Culture Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014227" MajorTopicYN="N">Triazines</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014466" MajorTopicYN="N">Ultraviolet Rays</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018505" MajorTopicYN="N">Waste Management</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="Y">methods</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2004</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2005</Year>
<Month>2</Month>
<Day>4</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2004</Year>
<Month>10</Month>
<Day>6</Day>
<Hour>9</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">15461165</ArticleId>
<ArticleId IdType="doi">10.1021/es049837a</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Iowa</li>
</region>
<settlement>
<li>Iowa City</li>
</settlement>
<orgName>
<li>Université de l'Iowa</li>
</orgName>
</list>
<tree>
<noCountry>
<name sortKey="Just, Craig L" sort="Just, Craig L" uniqKey="Just C" first="Craig L" last="Just">Craig L. Just</name>
<name sortKey="Schnoor, Jerald L" sort="Schnoor, Jerald L" uniqKey="Schnoor J" first="Jerald L" last="Schnoor">Jerald L. Schnoor</name>
<name sortKey="Yoon, Jong M" sort="Yoon, Jong M" uniqKey="Yoon J" first="Jong M" last="Yoon">Jong M. Yoon</name>
</noCountry>
<country name="États-Unis">
<region name="Iowa">
<name sortKey="Van Aken, Benoit" sort="Van Aken, Benoit" uniqKey="Van Aken B" first="Benoit" last="Van Aken">Benoit Van Aken</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004232 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004232 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:15461165
   |texte=   Metabolism and mineralization of hexahydro-1,3,5-trinitro-1,3,5-triazine inside poplar tissues (Populus deltoides x nigra DN-34).
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:15461165" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020